If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+2x-60=0
a = 10; b = 2; c = -60;
Δ = b2-4ac
Δ = 22-4·10·(-60)
Δ = 2404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2404}=\sqrt{4*601}=\sqrt{4}*\sqrt{601}=2\sqrt{601}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{601}}{2*10}=\frac{-2-2\sqrt{601}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{601}}{2*10}=\frac{-2+2\sqrt{601}}{20} $
| -7g=10−9g | | 9=(1/5)z+12 | | -9b=-10b−6 | | x(1–2x)(3+5x)=0 | | -9+5r=4r | | 7^4x=49^3x-4 | | x2+12x+47=0 | | 5x=28-5 | | 2.8y+60.2y=5y–14 | | (3/2)^-x=8/27 | | .03m=15 | | 4+t+t=13 | | 5=13-y | | 11-(8x/4)+21=54 | | 20-3m=2m-8 | | x-5=-16,x=-11 | | w/14=2/4 | | -40+x=-46 | | 12x^2+1080x-21600=0 | | 12.6m=37.8 | | (3x)^2+(4x)^2+(5x)^2=1250 | | 21^x=1 | | 3p/4+6=24 | | 520=-1.669x2+37.863x+385.739 | | 5t-3=18+3(1t);3 | | 2a/3=1/5=7/6 | | 530,000,000,000=-1.669x^2+37.863x+385.739 | | X2-5x=6 | | 5x=1= | | 3(2-5x)+5(5+7x)=(1-3x)-(2-2x) | | l/27=50 | | 2(2)-5(x-3)-3=66 |